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The wave functions derived by Kisslinger and Sorensen from the pairing plus quadrupole force model for
atomic nuclei are used to compute theoretical £2 electromagnetic transition rates between various low-lying
states in odd-mass spherical nuclei from Ni to Pb. Comparison is made with experimental data where avail-
able. The agreement between theory and experiment is quite good, a large majority of the forty or so cases
agreeing within a factor of 2 while the data cover a range of more than a factor of 1000.

I. INTRODUCTION

HE occurrence of giant quadrupole effects in nuclei
has been known for a long time.! For the de-
formed nuclei, one observes ground-state quadrupole
moments which are many times the single-particle
magnitude, and also £2 transition rates which are many
times enhanced above the Weisskopf estimate. For
spherical nuclei one observes E2 transitions from the
2+ to 04 ground state of the even systems which are
enhanced from a few times to one hundred times the
single-particle rate. It has been shown that all these
effects as well as “single particle” phenomena can be
explained in considerable detail by a nuclear model? in
which particles moving in a spherical potential well
interact with a pairing plus quadrupole force. It is the
purpose of this note to demonstrate that this model also
agrees in considerable detail with the presently available
data on £2 transition rates in odd-mass spherical nuclei.
In addition, an extensive table of theoretical E2 rates
for these nuclei is included to suggest possible interest-
ing cases for future experimental study.

II. CALCULATION

With the use of the approximations used by Kisslinger
and Sorensen®* to treat the pairing plus quadrupole
Hamiltonian for spherical nuclei, the nuclear states are
characterized by two types of excitations, quasiparticles
and phonons. For an even-even nucleus, the lowest
excited state is the one-phonon 24 state, which,
because of the energy gap for quasiparticle excitations,
is well separated from them and may be treated alone.
Good agreement with the 24 energy and transition rate
to the ground state is obtained with the use of a pairing
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and a quadrupole strength parameter which are smooth
functions of mass number, with the exception that the
calculated energy is too low, and the B(E2) value too
large for nuclei very near a region of deformation. To
reduce this difficulty, for the calculation of the prop-
erties of odd-mass nuclei, the quadrupole coupling
strength was chosen in Ref. 4 to fit the 24~ energy of
the adjacent even-even nuclei.

For odd nuclei, many states of one quasiparticle and
zero, one, or two phonons will lie rather close in energy,
and thus must not be treated as independent excita-
tions. In Ref. 4, the pairing plus quadrupole Hamil-
tonian is approximately diagonalized in the space of
states containing one quasiparticle and up to two
phonons. The approximation is to retain in the Hamil-
tonian only the terms which scatter the quasiparticle
while at the same time creating or destroying a phonon.
The no-phonon to one-phonon matrix elements are

(0] aj| Hins| (Blajr 1) j]0)= —5x(5/4m)}
X (Gl i)Coi (=)= (U;U—VVi), (1)

where the effective coupling constant ¥, defined in
Ref. 4, depends on the energy of the adjacent even
nuclei as described. The creation operators Bf and a;t
create 24 phonons and j-type quasiparticles, respec-
tively, where j represents the angular momentum
(and parity) of the shell model state. The state |0) is
the vacuum for quasiparticles and phonons and repre-
sents the ground state of an even-even nucleus. The
quantities U and V are the usual occupation factors of
the pairing theory. The one-phonon to two-phonon
matrix element, given in Ref. 4 contains the same factor
of (UjUj/‘_ VJ'V]").

The wave functions resulting from the diagonalization
procedure are of the form

1//,-=Cj00’dj“|0)+2 Cirag? (Blay 1|0y (2)

The C coefficients [not to be confused with the Clebsch
Gordan coefficient of Eq. (1)] for the lowest few states
of the spherical nuclei are computed and tabulated
in Ref. 4. The sum on 7’ is over all single-particle states
of the same parity as j for which |j— 7’| <2. The
parenthesis indicates that the 24 phonon and ;' quasi-
particle are coupled to an angular momentum j. Owing
to the presence of the U, V factor in Eq. (1), the
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TasLE I. Reduced E2 transition probabilities for odd mass spherical nuclei. The first and second column lists the isotope, and the
levels between which the transition occurs. Columns 3, 4, and §, list the single particle [Eq. (7)], theoretlcal [Eq. (6)], and exper-

imental [B(E2)], values divided by 2j,+1, where j; is the final angular momentum, in units of 10~5%?2

B (E2)g p. / B (Ez)theor/ B (Ez)axptl / .. B (E2), p. / B(EZ)ﬁ,em./ B (E.Z)exptl./
Isotope Transition 27,41 24r+1 2j5+1 Isotope Transition 2j,41 27541
2Ni®® paafore 0.010 0.038 5Cs®  syadse 0.20 1.25
Nijet 312 for2 0.010 0.0035 0.012» 512 8172 0.009 0.229
Nis3 pase forz  0.011 0.036 Cstdt s1/2 @s/2 8(2)0 1.4;
d, .009 0.174
30Zn Dara for2 0.011 0.0002 (138 315//: gZ//: 0.20 1.48
Zn®  pspfer 00110078 wagvs 0010 0097 0.20"
Zn® Psre ?5/2 0.012 0.105 88%“ Cg135 Sis2 das2 0.21 1.30
Pz Jor2 01 sngn 0010 0.043
Cg1¥ S124 0.21 1.24
R8s 0.016 0.148 0.077° 1/2 @5/2
N A 0.125 sngre 0010 0.010
Cdw? S1/2 dsr2 0.15 0.023 ssBatdt S1/z dasz 0.20 2.75
48 ds/2 8112 0-027 0.0065 ggiz S1/2 darz 8%(1) g%g 0.24¢
109 d 0.1 0.81 S1/2 372 .
“ 1;13//2;875//22 0.10 0.72 Bal¥ S1/2 @372 0.21 1.60 0.65¢
d32 ds)s 0.022 0.012 .
S1re d3ra 0.15 1.98 s7La S1/2dsr2 0.21 1.47
ds281/2 0.007 0.051 o ds2 g2 0.010 0.0067
BPs 1888 o La S1/2 d5/2 0 22 1.41
Cd S1/2 ds/z 0.16 1.78 2.4
dsj2 8172 0.10 0.51 ds/2 8172 0.010 0.0014
ds2 d 0.023 0.0032
suadsn 016 2.09 270 WP spdys 022 1.50
ds/2 8112 0.010 0.0008 <0.042
dsr2 8112 0.008 0.079 Pyt g 0,011 0.0098
Cdus S1/2 ds/2 0.16 2.48 5.0¢ r 5/2 81/2 8 .
ds/z g1/ 0.10 0.212 5 )
d32d, 0.023 0.0004 soNd Parz fue 0.15 0.78 1.7i
suadas  0.16 2.02 2.7¢ NA¥  pos fir 015 109
d 0.008 0.063
Cam  soadus 017 2.90 aPm  dysgue 0011 00088 .
dss2 g1/2 0.11 0.021 Pm::; ds/2 112 0.011 0.090 0.367
dyadsz 0. 034 0.0007 Pm dspgre 0011 0.039
S1/2 dase 0.1 1.43
d5/2 812 0.008 0.049 62§$;:; 23/2 ;7/2 8%2 (1)33
312 f1/2 . .
5090117 S1/2 d3/e 0.17 0.134 0.02-0.10¢
Sn““ S1/2 da/z 017 0.0001 <0.2d 77II‘191 S1/2 ds/z 0.32 114
Snl"'1 S1/2 dg/g 0.18 0.111 da/z ds/z 0 047 735 10.5k
Sniz8 S1/2 da/z 0.18 0.393 Ir198 21/2 (‘113/2 8 (3)28 g}}g 12.5
Sn12s S1/2 d3/2 0.19 0.61 370 ds/2 . 5e
51Sb‘16 S1/2 d5/2 0.17 1.34 Pt193 / f / 0.33 5.15
ds/2 8172 0.008 0.154 ® ﬁ:/: P:/Z 0.33 495
Shu? S1/2 ds/z 0 17 1.30 1)312 f5/2 0.048 0305
ds/a g1s 0.008 0.156 P15 Dure fore 034 4.95 5.0t
Shue S1/2ds/2 0.18 1.31 P2 b3z 0.34 2.78 4.5
dspgrn 0008 0155 pusfon 0048 0.0005
Sht 21/2 ds/2 8(1)39 (1)‘1%8 1.7¢ Pro7 bus for 034 3.;0
12 811 : 0.34 0.73
dusgs 011 0.98 1.04¢ pusbun 08 0296
d3/2 ds/z 0.026 8.1?1 1.1e
s1/2d3/2 0.18 134 AW . dyys grsa 0.22 6.55
Sbi - suzdsn 018 116 dr 033 1.36 3.m
dypgin 0009 0.146 0.065° arar oois 58
Shizs S172 dsr2 0.19 1.33 Aul? dsz 12 0.22 4.40 5.4k
ds2 g2 0.009 0.168 s172 dsz 0.33 0.74 g 7,:
salet?t s1/2 dase 0.18 0.174 5.44 Au®? gﬁﬁ: g:;: 8(2)38 igo 6
%e:;ss S1/2 dx/z g }58) (1)28 0.45-0.84 Stradare 034 0.55
¢ S1/e dare : dsindss 0049 356
1126 d, 0.19 0.96
* 215//22 g:g 0.009 0.134 soHg!s guz g 5/2 8%1 igg 11.5»
T2 0.19 1.09 ~1.0e 1/2 P32 . X
215//22 g://; 0.009 0.156 o D32 fsr2 0.049 0.177
129 1.09 12 for2 . . .
I s172 o2 0.20 Hg? b fi 0.34 ? ;g 3.50
ds/2 8112 0.009 0.134 guz _1;3/2 8829 L7
131 312 fo/2 . .
! 32//22 tég//zz g (2)89 (1) ?i’l Hgt® pus fsrr 035 2.64 6.32
P2 pare 0.35 0.44 2.5k
“Xelﬂ S1/2 da/z 0.19 1.96 Psr2 f5/2 0.050 0.194
Xe12 S112 3z 0.20 1.87 Hg! e fsrz 0.35 0.45
Xetst S1/2 B3/2 0.20 1.58 puzpse 035 0.042
Xel3 S1/2 @372 0.20 1.32 173/2 fa/z 0.050 0.424




TRANSITIONS

TaBLE I (Continued).

B (EZ), p. / B (E2)thenr/ B (Ez)exptl./
Isotope Transition 2j;+1 255+ 2j§5+1
soHg208 puz fsz 036 0.208
Driz pare 0.36 0.89
Pasz fore 0.051 0.407
s;Tp” S1/2 da/z 035 274
dsse ds/a 0.050 0.025
TP S1/2 @372 0.35 2.87
372 ds/2 0.050 0.014
T]208 S1/2 @372 0.36 2.45 3.1¢
372 ds/2 0.051 0.005 <0.3¢
S1/2@5/2 036 408 3.5"
T sipdse 0.36 2.04 2.5¢
dss2 dsia 0.052 0.0 <0.15¢
Si2dsr2 0.36 3.73 1.9¢
32 PH203 P12 Jsr2 0.36 ~0.01 0.13n
P32 fsr2 0.051 0.039
P pijsfse  0.36 0.016
pais fsrz  0.052 0.066
P12 Pare 0.36 0.074
P27 pus fsre 037 0.37 0.63=
pare fsra  0.052 0.052
pise Pz 0.36 0.36
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coupling is often relatively weak for the ground state,
for which the factor may be small. For most other low-
lying states, including some ground states, the coupling
is strong enough that C; 157 is a sizeable fraction of Cjoe”.
It is for this reason that E2 transitions in odd nuclei are
often much more enhanced than the corresponding
ground-state quadrupole moments.
The E2 transition operator contains two terms*

W(E2)=3TZ(E2),,.D_+3TZ(E2)®1 . (3)

The single-particle term has matrix elements between
quasiparticle states

(0] a9, (E2)s.p.0501| 0)
=eut(7| 2V, 2| Y U;U;—V;Vy). (4)

It also has matrix elements between quasiparticle
states, each of which has, in addition, one phonon, but
these may be ignored since they will always be over-
whelmed by the collective matrix elements discussed
below. The effective charge, ess of Eq. (4), which is to
take into account the quadrupole polarization of the
core by the particles of the last major shell which are
used explicitly in the calculation, is chosen as =1
for neutrons and e¢= 2 for protons.

IN ODD-MASS SPHERICAL NUCLEI
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The collective term has matrix elements between
states differing by one unit in the number of phonons
present. The simplest such matrix element is related to
the reduced E2 transition rate for exciting the first
excited state of an even nucleus, i.e., the one-phonon
state:

B(E2)0+-'>2+= z I (0 I Bmfmﬂ(Ez)coll 0>[ ! ’ (5)

umy

where B(E2) is the usual reduced E2 transition proba-
bility. The collective matrix elements important for the
odd-mass transitions are those between a wave-function
component containing just a quasiparticle and one
containing a quasiparticle and a phonon. Aside from a
simple geometrical factor, these matrix elements are
just the same as that given by Eq. (5). In order to
utilize the information from the even nuclei as much as
possible, in evaluating the above matrix element, the
average of experimental B(E2)p-2+ values from
neighboring even-even nuclei is used rather than the
expression derived in Ref. 4 for this quantity.

The final form for the reduced transition probability
for an E2 transition between two states of the form of
Eq. (2) becomes

B (Ez)ji_)jftheor ) ‘
—_—= Cjioo“cjfoo’/
25,41
(fl2]9)
Xeeff*—*—( DiACy_ g1 (UU;~ViVy)
(4m)?
B(E2)op247T} . o
H = T i )

2

+ 274+ 1)73Cj007Cii00]| . (6)

The single-particle estimate with which to compare is
B(E2)jimif* > (f |7*]4)?
2j+1 4o

In Egs. (6) and (7) the factor 25,41 is included to make
the theoretical expression symmetric in 7; and j;. The
theoretical expression, Eq. (6), may then be compared
with experimental B(E2) values obtained from Coulomb
excitation or lifetime measurements. In the latter case
the B(E2) value is related to the partial lifetime by

1/Ty(E2)= (4x/75)(E*/h°c%) B(E2). 8)

In Table I, the theoretical values, Egs. (6) and (7), are
given for various possible transitions between low-lying
states whose wave functions are computed in Ref. 4 for
spherical nuclei from Ni to Pb. The corresponding
experimental value is included when available.

(Cyiyire?)?. Q)

III. DISCUSSION

The theoretical results for E2 transitions in odd
nuclei are seen to range from a small fraction of the
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single-particle rate to more than one hundred times
single particle. The very large rates occur only for
nuclei whose even neighbors have particularly large
B(E2)¢4-24 rates. The small rates are not so common,
only about 30 of the 150 calculated cases being less than
single particle. These cases occur only if the factor
(U;U;—V;V;) is quite small, corresponding to A, the
Fermi energy of pairing theory, being midway between
the two single-particle energies in question. The exact
isotope for which this occurs depends sensitively on the
original choice of the single-particle energies. The
experimental B(E2) values for odd nuclei in this region
also vary over a range of a factor of 1000. The
agreement between theory and experiment is quite
good, the large majority of the forty or so cases agreeing
to within about a factor of 2 with the theoretical
result.

This agreement shows that there is considerable truth
in the picture of wave functions of odd spherical nuclei
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consisting of linear combinations of quasiparticles and
quasiparticles coupled to phonons. Furthermore, the
phonons have the same properties as those of the
neighboring even nuclei, and the mixing coefficients of
Eq. (2) may be computed as in Ref. 4. Further experi-
mental investigation is desirable, and the calculated
rates may serve as a guide to the expected rates. Fast
cases might be used to investigate the phonon character
of the wave functions in more detail. On the other hand,
an observation of the E2 rate in cases for which a large
retardation from the single particle rate is predicted
might help to determine ‘the validity of the single-
particle energies used in the calculation and also to

indicate possible wave-function components not
included in Eq. (2).
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Investigations of the decay of the three-particle state in Lu!"” with spin 23/2~ performed with the crystal
diffraction technique revealed evidence for three-particle states in Hf!77 and rotational bands in Lul" and
in Hf'"7. Levels with spins to 17/2 were found in the K=7/2* rotational band in Lu'”” while the K=7/2~
and K=9/2* bands in Hf'"" were found to be excited up to spin 21/2 levels. From energy and intensity
measurements of the cascade, crossover, and interband transitions, the values of a number of parameters
pertinent to the collective model were derived. In particular, it was verified for each of the rotational bands
that the quantity (gx—gr)/Qo was a constant within the experimental error.

INTRODUCTION

ECENTLY, Jorgensen e all have observed a
155-day isomeric state in Lu'”” in a neutron-
bombarded lutetium sample. From considerations of the
decay mode they conclude? that this isomer has a very
high spin of 23/2. Only a three-particle configuration of
the odd proton of Lu!”” and an uncoupled neutron pair
could give rise to this high spin. In particular, the con-
figuration obtained by adding the [6247]9/2% neutron
and the [5147]7/2~ neutron to the [404]7/2* proton is
most likely to explain the observed Lu!" isomer.
The large change in the intrinsic configuration reduces
the speed of the electromagnetic isomeric transition

t Work performed under the auspices of the U. S. Atomic
Energy Commission.
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from the three-particle state so that it can compete with
B decay into the neighboring Hf'"7. In Hf'"7 similar
three-particle states are expected to appear. A con-
figuration based on the [5147]7/2 neutron coupled to a
[514719/2 proton and a [404]7/2% proton could result
in a state of spin 23/2*. Two other configurations
favored by energy considerations both resulting in spin
21/2% are obtained by coupling the [514]7/2~ neutron
to the [514719/2— and [4027]5/2+ protons, or by coupling
together three neutrons in [624719/2+, (51417/2-, and
[51275/2~ orbits. Other combinations resulting in three-
particle states of spin 25/2—,19/2—,17/2+,15/2+,15/2-,
and 13/2~ can be constructed, but their respective
energies are expected to be somewhat higher than those
of the 23/2* and 21/2% configurations.

In this article we report on a study of the decay of the
Lu'” isomer into Lu'”” and Hf'”7. Evidence for two
three-particle states in Hf'’7 with spin 23/2+ and 21/2+



